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Abstract. Heterointerfaces, applied bias and built-in potentials break the symmetry
of the crystalline lattice in a resonant tunneling diode (RTD) which causes a strong
interaction of heavy-, light- and split-off hole bands. This interaction leads to hole
transport paths which are significantly more complicated than the paths for elec-
trons. Compared to a direct bandgap electron RTD where most of the carriers are
transported straight through the structure (zero transverse momentum) it is shown
here that in the hole case most of the holes are transported through the structure at
an angle (non-zero transverse momentum) for a wide range of bias points.

1. Introduction

Atomistic Modeling is needed to treat material variations on an atomic scale that enable the quantum
mechanical functionality of devices such as resonant tunneling diodes (RTDs). To enable the explo-
ration of the vast heterostructure design space a general purpose quantum mechanics-based 1-D device
design and analysis tool entiteled NEMO (Nanoelectronic Modeling) has been developed [1]. NEMO
is based [2] on the non-equilibrium Green function approach, which allows a fundamentally sound in-
clusion of the required physics: bandstructure, scattering, and charge self-consistency and it has shown
[3,4] to have predictive simulation capablities. More information on NEMO, including how to obtain a
copy of the software, can be found on web sites [1].

Hole Transport Analysis for Optical Devices: Quantum mechanical carrier transport research has
focused on pure electron transport since most high speed quantum devices utilize the high electron
mobility in III-V materials. However, typical optical devices also involve quantum states in the valence
bands. Interband quantum cascade lasers in particular involve direct tunneling between conduction and
valence bands. To begin a NEMO study of quantum mechanical carrier transport in such structures the
coherent transport in a simple hole-doped RTD is examined.

Previous Research has shown [5–8] that hole transport is strongly influenced by coupling between
the light hole (LH), heavy hole (HH) and split-off (SO) valence bands. The valence bands are coupled
intrinsically by the spin-orbit interaction and by translational symmetry breaking induced by material
variations and internal or external fields. Envelope function representations have been used extensively
in much of the published work on hole transport [9–15]. This paper is an extension of previous work
by Kiledjian et.al. [16] who use a nearest-neighbor sp3s* empirical tight-binding basis which includes
the spin-orbit interaction to all orders and incorporates wavefunction coupling at interfaces through
orbital interactions. We include both nearest and 2nd-nearest neighbor interactions [17] to better fit the



complicated valence band dispersion.

Parallelization of the NEMO code on various simultaneous levels (voltage, transverse momentum
integration and energy integration) and the use of massively parallel computers enabled the thorough
exploration of the state space in total energy E and transverse momentum k for a significant number of
bias points. The main point of this paper is to contrast qualitative differences between electron and hole
transport in RTD’s. The resolution of the transverse momentum k of the carriers will be used visualize
the qualitative differences.

2. Momentum dependent Current Density J(k)

If incoherent scattering in the central device region can be ignored the current can be computed [2,3]
using an expression of the form:
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where k is the electron momentum transverse to the transport direction normalized to the unit cell a by
�

a
, E is the total energy, T the transmission coefficient, and fL=R the Fermi function in the left/right

contact. The dependence of the transmission coefficient on the momentum angle � has been found [18]
to be weak in the material and device system studied here. To gain insight as to “where” the carriers
flow with respect to the transverse momentum quantum number we define the intermediate quantity
J(k).

3. Tsu-Esaki Formula

One common approach in reducing the required CPU time needed to compute a complete I-V
characteristic is the assumption of parabolic transverse subbands such that the transmission coefficient
has a analytic, parabolic transverse momentum dependence: T (E; k)=T (E��h2k2=2m�; k=0). Under
this assumption the transverse momentum integration in Eq. 1 can be carried out analytically to result
in the so-called Tsu-Esaki [19] formula:
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This paper will show in the next section an example of good [20] agreement between the Tsu-
Esaki approximation and the full numerial integration for a structure that has flat band conditions in the
emitter and therefore provides a 3-D emitter to 2-D quantum well tunneling process. We emphasize
here in advance that such a simulation is included for paedagogical reasons, to show the simple behavior
of J(k) for electrons. The rest of the paper underlines that the analytical Tsu-Esaki integration becomes
completely invalid for hole transport [16].

4. The Model Structures

To simplify the analysis of the hole transport case we consider the most trivial RTD structure of
flat emitter and collector bands and a linear potential drop along the barriers and well. The barriers



and well are 10 and 20 monolayers thick, respectively. The emitter, collector and well are taken to be
GaAs. The hole/electron RTD is assumed to have AlAs / Al0:4Ga0:6As barriers [21]. The doping in
the contacts is set to 1018cm�3. The second nearest neighbor sp3s* tight binding parameters for these
three materials can be found in [18].

5. Monotonic Momentum Dependence of RTD Electron Transport

Figure 1a) shows the familiar transmission coefficient through an electron RTD at zero transverse
momentum. Figure 1b) shows the expected transverse dispersion for the ground and first excited state
in a GaAs/AlGaAs RTD. Some non-parabolicity is evident in the first excited state (decreasing state
separation with increasing k). Figure 1c) shows the transmission coefficient for a non-zero transverse
momentum. This transmission coefficient appears qualitatively to be just energy shifted from the one in
Figure 1a) disregarding non-parabolicity in the second state and the non-unity transmission resonance.
That is exactly the assumption that enters into the derivation of the Tsu-Esaki formula (Eq. 3).

0.0 0.04 0.08
Momentum k

10-9 10-6 10-3 100

Transmission

0.0

0.1

0.2

0.3E
lectron E

nergy (eV
)

10
-9

10
-6

10
-3

10
0

Transmission

0.0 0.02 0.03
Momentum k

0.01

A
pplied B

ias (V
)

0.0

0.4

0.6

0.2

10
-1

10
0

10
1

10
2

Current  (kA/cm2)

T(E,k=0)
T(E,k=0.039)

E(k)

J(k,V)
J(k,V=0.1)

J(V)

0.0 0.02 0.03
Momentum k
0.01

0.0

0.5

1.0

C
urrent D

ensity J(k)  (a.u.)

(a) (b) (c)

(d)
(e) (f)

Transverse k Integr.:
          numerical
          analytical 
         (Tsu Esaki k=0)

FIG. 1. Transport in an electron RTD. (a) Transmission coefficient T (E; k = 0). (b) Transverse electron
subband. (c) Transmission coefficient T (E; k=0:039). Curve is qualitatively identical to (a) except for the shift
in energy. (d) Current density J(k; V =0:1V ) as a function of momentum k at a bias of 0.1V. J(k; V = const)

is monotonically decreasing. (e) Current density J(k; V ) as a function of transverse momentum k and applied
Voltage V on a logarithmic gray contour scale (dark=high, light=low). Dark regions indicate the emitter Fermi
sea passing through the resonances. J(k; V = const) is monotonically decreasing for all k. Dashed horizontal
line references the cut along V = 0:1V in (d). (f) Current voltage characteristic J(V ) after integration over
transverse momentum.



In Figure 1e) the current density spectrum of J(k; V ) is shown as a function of transverse mo-
mentum k and applied voltage V on a logarithmic contour gray scale plot. Dark/light shades indicate
high/low density, respectively. The dark filled parabolic region corresponding to the parabolic disper-
sion of the ground state is a nice depiction of the Fermi sea of electrons that is allowed to flow through
a structure where the emitter and quantum well dispersion are identical.

Figure 1d) shows a cut through Figure 1e) along the momentum axis k for a constant bias of
0:1V . J(k) is simply monotonically decreasing. It can be shown analytically [18] for electrons that are
injected from a 3-D emitter with the same effective mass as the RTD well that J(k) is monotonically
decreasing with transverse momentum k independent of the applied bias. The following section will
contrast the differences of electron and hole transport with respect to the behavior of J(k).
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FIG. 2. (a) Transmission coefficient T (E; k=0). (b) Transverse hole subband. (c) Transmission coefficient
T (E; k = 0:039). The transmission coefficient in (c) is clearly not just an energy shifted version of the trans-
mission coefficient of (a). (d) Current density J(k; V = 0:2V ) as a function of momentum k at a bias of 0.2V.
J(k; V = const) is shows sharp spectral features as a function of momentum k on a linear as well as a loga-
rithmic scale. (e) Current density J(k; V ) as a function of transverse momentum k and applied Voltage V on
a logarithmic gray contour scale (dark=high, light=low). Dark streaks indicate narrow regions of high current
density in the (k; V ) space. Dashed horizontal line references the cut along V =0:2V in (d). (f) Current voltage
characteristic J(V ) after integration over transverse momentum. The analytical (Tsu-Esaki) integration misses
several current channels that are open for k 6=0.



Figure 1f) shows two current voltage characteristics computed in the electron case with numerical
and analytical transverse momentum integration. Since we considered a 3-D emitter and a material
system with little non-parbolicity we observe a good agreement [20] between the two computational
results.

6. Spiked Momentum Dependence of RTD Hole Transport

Figure 2 is in its structure similar to Figure 1. The top panel (2a-c)) shows the transmission coefficients
and E(k) dispersion at zero bias for the hole RTD. Note that the dispersion in Figure 2b) is anything but
parabolic. The various heavy hole (HH) and light hole (LH) resonance states are strongly interacting
as evident by the various anti-crossings. The interaction creates strong variations in the transmission
coefficients as a function of transverse momentum.

As the strongly k-dependent transmission coefficients are integrated over total energy E one ex-
pects to see strong variations in J(k) with the transverse momentum k. This is indeed displayed in
Figure 2e) where J(k; V ) is plotted as a function of transverse momentum k and applied voltage V on
a logarithmic contour gray scale plot. Dark/light shades indicate high/low density, respectively. Un-
like the electron picture of Figure 1e) we now see distinct streaks of high current density in the (k; V )
space. Interestingly these streaks follow the hole dispersion in Figure 2b) closely to the emitter Fermi
wavevector at about kF �0:029. Indeed a close connection between the two spectra can be established
analytically [18]. These streaks of current develop since the (almost) parabolic dispersion in the emitter
and the highly non-parabolic dispersion in the well create non-trivial transverse momentum conserving
selection rules [18].

Figure 2d) shows a cut through Figure 2e) along the momentum axis k for a constant bias 0:2V .
Sharp spectral features as a function of transverse momentum k on a linear as well as a logarithmic
scale are visible. Figure 2d) shows that most of the carriers are flowing through the structure with a
non-zero transverse momentum. Since the high current density streaks in Figure 2e) move along a wide
bias range it is clear that the hole transport is off-zone center for a wide bias range.

The current voltages shown in Figure 2f) show that the analytical transverse momentum integra-
tion completely misses some of the conduction channels. The Tsu-Esaki approximation breaks down
completely and a full numerical transverse momentum integration is therefore necessary to capture all
the conduction channels.

6. Summary and Conclusions

This work demonstrates the qualitatively different carrier spectra in hole and electron transport through
very simple structures. It has been shown that the majority of holes travels through the structure at
an angle (with non-zero transverse momentum) rather than straight through for a large range of bias
points.

To achieve a numerically noiseless current voltage characteristic in the hole RTD we included
about 140 numerical k points in the range of [0:::0:045] on a uniform k-grid. Such computations re-
quire about 3 days of computing time on a 32 CPU beowulf cluster consisting of Intel Pentium III
processors running at 450MHz. Since our past experience with electron transport has been that J(k)
varies smoothly and a homeogeneous k-grid with only few k points provided excellent results we had
not incorporated an adaptive k-grid. To optimize the computational performance one could introduce
an adaptive k-grid integration similar to the the adaptive energy grid integration we are performing



already.

With the insight of “where” the carriers flow in momentum and energy space we can now proceed
to simulate experimental hole RTDs and study interband transport occurring in Sb-based RTDs and
cascade lasers.
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